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Abstract. The stability of ferromagnetism in the s–d model of double exchange is investigated
variationally for quantum spins. It is shown rigorously that forS = 1

2 and infinite Hund’s rule
coupling, the state of complete spin alignment is unstable for 0.12< n < 0.45, wheren is the
number of electrons per atom in the conduction band. Band narrowing in the paramagnetic state
is also investigated in the quantum spin model. The effect is found to be somewhat stronger
than in the classical spin limit and depends onn.

1. Introduction

For nearly fifty years it has been known there is a correlation between magnetic order and
conductivity in the manganites La1−xDxMnO3, where D is a divalent ion such as Ca, Ba,
Sr [1, 2]. Recently there has been renewed interest in these systems due to the discovery
of colossal magnetoresistance (CMR), the name given to a huge reduction in resistivity in
an applied magnetic field [3–6]. Forx = 0, LaMnO3 is an antiferromagnetic insulator, but
on doping with 0.2< x < 0.5, the system becomes a ferromagnetic metal. In these doped
systems the resistivity rises with increasing temperature to a peak near the Curie temperature
Tc and then falls continuously in the paramagnetic state. The CMR phenomenon is observed
in the vicinity of Tc. The high resistivity, with a negative temperature gradient, in the
paramagnetic state indicates insulating rather than metallic behaviour.

The essential ingredients for a model of these systems are local spinsS = 3/2 on
each Mn site, corresponding to three localized d electrons of t2g symmetry, andn = 1− x
itinerant electrons per Mn atom occupying a band derived from Mn d states of eg symmetry.
The itinerant electrons are coupled ferromagnetically by Hund’s rule to the local spins. The
simplest model is the s–d Hamiltonian [7–9]

H = −t
∑
〈ij〉
σ

c
†
iσ cjσ − J

∑
i

Si · σi = H0+H1 (1)

where the first termH0 describes the hopping of itinerant electrons between nearest-
neighbour sitesi, j (t > 0) and the second termH1 is the ferromagnetic Hund’s rule
coupling (J > 0) between local spinSi and itinerant spinσi on each site. Since we
are interested in doped ferromagnetic systems, the antiferromagnetic interaction between
neighbouring local spins plays no important role and is neglected here. Other simplifications
are the use of a single s band, instead of two d bands based on orbitals of eg symmetry,
and the neglect of coupling to phonons.

In much of the theoretical work [10–15] on this model, the local spins are treated as
classical vectors (corresponding toS →∞). For J � t the itinerant spin must always be
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parallel to the local spin on each site so that the effective hopping integral for hopping
between sitesi andj becomest cos(θij /2), whereθij is the angle between the classical spins
Si ,Sj . The resultant band narrowing in the paramagnetic state favours ferromagnetism,
this being the so-called double-exchange mechanism, and there is a widespread belief that
the Hamiltonian (1) withJ → ∞ has a ferromagnetic ground state, with complete spin
alignment, for all band occupation 0< n < 1 even for quantum spinsS. In section 2
we show rigorously that this is not the case forS = 1

2 and investigate the condition for
instability of the ferromagnetic state withS = 3/2 for finite J . Our method is equivalent
to that of Okabe [16] but he did not point out the occurrence of ferromagnetic instability
in the s–d model. Anderson and Hasegawa [9] and Kubo and Ohata [17] were the first to
investigate the effect of quantum spins on the double-exchange mechanism.

The quantum nature of the local spins also plays a role in the band narrowing which
occurs in the paramagnetic state. This is the subject of section 3 and we show that the
band-narrowing effect is stronger than in the classical double-exchange model. This may
be important in enhancing polaronic effects of coupling to the lattice in the paramagnetic
state. Such effects have been proposed [13, 14] as the origin of the metal–insulator transition
which occurs on passing throughTc.

2. Instability of the ferromagnetic state

The Hamiltonian may be written

H =
∑
k

εkc
†
kσ ckσ − J

∑
i

Si · σi (2)

wherec†kσ creates an electron in a tight-binding Bloch state of wave-vectork and spinσ ,
and

εk = −t
∑
R

eik·R. (3)

The summation in equation (3) is over sitesR which are nearest neighbours of the site at the
origin. In the lowest-lying state|F 〉 of complete spin alignment all local spins are aligned
in the direction of spin quantization (thez-direction) and then itinerant electrons occupy
Bloch states within the↑-spin Fermi surface. This is an exact eigenstate ofH with total
z-component of spinN(S + 1

2n), whereN is the number of atoms, and we wish to test the
proposal that it is the ground state of the system for largeJ . The stability of this proposed
ground state against reversing a spin may be tested rigorously by comparing its energy with
that of a variational wave-function with totalz-component of spinN(S + 1

2n) − 1. If the
variational energy is lower than the exactly known energy of|F 〉 one can state rigorously
that |F 〉 is not the ground state of the system. As pointed out by Okabe [16] this approach
closely parallels earlier work on the stability of the Nagaoka state in the Hubbard model
[18–20]; as in the latter case, instability due to spin reversal occurs most readily through
single-particle excitation rather than spin waves. Thus an↑-spin electron is removed from
the Fermi surface, with energyEf − 1

2JS, and a↓-spin quasiparticle of wave-vectork is
added with energyE1(k) determined variationally. HereEf is the Fermi energy in the
band, soεk = Ef represents the Fermi surface. Since the bottom of the↓-spin quasiparticle
band occurs atk = 0, as for the bare band, the lowest excitation energy on spin reversal is
given by

E = E1(0)− Ef + 1

2
JS. (4)
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If E < 0, the state of complete spin alignment|F 〉 is not the ground state. IfE > 0, no
definite conclusion can be drawn. If the local spins are treated classically they are rigid
andE1(0) = ε0 + 1

2JS, soE > 0 for sufficiently largeJ . However, with quantum spins
the↓-spin particle of wave-vectork can scatter to a stateq near the↑-spin Fermi surface,
exciting a magnon of wave-vectork− q. Multiple scattering of the↑-spin particle and the
magnon leads to a bound state below the scattering continuum, corresponding to a↓-spin
quasiparticle, which can result inE being less than zero. This is familiar from the Hubbard
model [18–20] and motivates the choice of variationalansatzin the present case.

In order to calculateE1(k) we wish to construct a wave-function for a state with a
↓-spin electron of wave-vectork added to the state|F 〉. The simplest wave-function, the
only possibility for classical spins, is

|k〉 = c†k↓|F 〉. (5)

However, the crucial magnon–electron scattering states are given by

|k; q〉 = 1√
N

∑
i

ei(k−q)·(Ri )(σ−i + S−i )c†q↑|F 〉 (6)

whereS−i is the local spin-lowering operator andσi = c†i↓ci↑ is the corresponding itinerant-
spin operator. The total spin-lowering operatorσ−i + S−i reduces thez-component of the
total spin but preserves the parallelism of the local and itinerant spins on each site, which
is essential for largeJ . The required variationalansatzis

|9k〉 = A|k〉 +
∑
q>kf

Aq |k; q〉 (7)

whereq > kf indicates summation over↑-spin states unoccupied in|F 〉. This is equivalent
to Okabe’s [16] equation (7.8). It is easily shown that minimizing〈9k|H |9k〉 with respect
to A,Aq, enforcing the normalization condition〈9k|9k〉 = 1 by means of a Lagrange
multiplier which is actually the energyE0 + E1(k) whereE0 is the energy of|F 〉, is
equivalent to solving the Schrödinger equation within the subspace of states|k〉, |k; q〉.
Thus

〈k|H − E0|9k〉 = E1(k)〈k|9k〉 (8)

and

〈k; q|H − E0|9k〉 = E1(k)〈k; q|9k〉 (9)

where |9k〉 is given by equation (7). The matrix elements are easily evaluated and
equation (8) is found to involve the parameters only asA−1∑

q>kf
Aq. Equation (9) may

be solved for this quantity and the parametersA,Aq are thus eliminated. The resultant
equation forE1(k) is

E1(k)− εk + 1

2
JS = JS(1+ JSFk)−1 (10)

where

(n+ 2S)Fk = N−1
∑
q>kf

[
εq − 1

2
JS + ω(k − q)− E1(k)

]−1

(11)

and the approximate spin-wave energyω(q) is given by

(n+ 2S)ω(q) = N−1
∑
p<kf

(εp+q − εp). (12)
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For k near the origin, equation (10) has a solutionE1(k) below the electron–magnon
scattering continuum of energiesεq − 1

2JS + ω(k − q), as discussed previously for the
Hubbard model [18, 19], and the lowest of these solutions isE1(0). Thus the lowest
spin-reversal excitation energyE, given by equation (4), satisfies the equation

E + Ef − ε0 = JS[1+ JSF0(E)]
−1 (13)

where

(n+ 2S)F0(E) = N−1
∑
q>kf

[εq + ω(q)− Ef − E]−1 (14)

sinceω(−q) = ω(q). This corresponds to Okabe’s equation (7.9); he points out that
inclusion of an on-site Hubbard repulsive interactionU

∑
i ni↑ni↓ between the itinerant

electrons merely replacesJS by JS+Un in equation (13). If all of thez nearest-neighbour
sitesR are equivalent, and hence

∑
p<kf

exp(ip ·R) does not depend on the particularR,
it is straightforward to show from equation (12) that

(n+ 2S)ω(q) = −(1+ εq/zt)N−1
∑
p<kf

εp. (15)

We consider particularly the two-dimensional square lattice and the simple cubic lattice
which is relevant to the Mn sublattice of the manganites. The summations in equations (14)
and (15) may be carried out as energy integrals so that the nature of the lattice only enters
as a density of states.

The limit of classical local spins corresponds toS →∞, J → 0, such thatJS remains
finite. ThenF0(E)→ 0 and the right-hand side of equation (13) becomesJS, soE > 0,
indicating ferromagnetic stability, for sufficiently largeJS (>Ef + zt), as pointed out
previously. The limitJ → ∞ with finite S is quite different, with the right-hand side of
(13) becoming 1/F0(E). However, asS →∞ it is easy to show thatE > 0 for all n. If
we formally putS = 0 in this J →∞ limit, the results correspond to the Hubbard model
with U →∞, as pointed out by Okabe [16].

In figure 1 we show results for the spin-reversal excitation energyE as a function of
band occupationn in the limit J →∞, with S = 1

2, 1, 3
2 for (a) the square lattice and (b) the

simple cubic lattice. Okabe [16] gives results only forS = 0 and 3
2 in the square lattice and

our results agree with his in these cases. (We do not show theS = 0 case corresponding
to the Hubbard model, since this has been discussed exhaustively elsewhere [20].) The
most interesting result is the instability(E < 0) of the completely aligned ferromagnetic
state in the simple cubic lattice withS = 1

2, where quantum effects are most important, for
0.12 < n < 0.45. The increased stability of ferromagnetism in the two-dimensional case
follows the same trend as in the Hubbard model [20]. The rather complicated variation of
the curves in figure 1 asS is changed is due to competing effects; the factorn + 2S in
[F0(E)]−1 tends to increaseE with increasingS, whereas the same factor in equation (15)
leads to a decreasing spin-wave energy which tends to decreaseE. The form of the curves
depends sensitively on the form of the density of states. It is found that the dip in the
S = 1

2 curve in figure 1(b), which gives a region of ferromagnetic instability, disappears
if the correct simple cubic density of states is replaced by a semi-elliptical one in the
calculations.

As seen in figure 1(b), the present approximation indicates a stable ferromagnetic state
for all n, with J →∞, in the physically interesting case ofS = 3

2, corresponding to Mn4+ in
the manganites. Figure 2 shows the development of an instability asJ is decreased although,
as Okabe [16] points out, this will not occur in the presence of strong Coulomb repulsion
U . The instability first occurs forJ of the order of the bandwidth withn ' 0.7. Even
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(a)

(b)

Figure 1. The spin-reversal excitation energyE (in units of 2t) as a function of band occupation
n(J →∞) with S = 1

2 , 1, 3
2 for (a) the square lattice and (b) the simple cubic lattice.

when the ferromagnetic ground state is stable there are clearly low-lying single-particle
excitations of the type considered here whenn ∼ 0.7. These excitations correspond to
removing an↑-spin electron from the Fermi surface and putting it in a↓-spin quasiparticle
state, which is a bound state of an↑-spin electron and a magnon, at the bottom of the
bandk = 0. The energy of such excitations, with wave-vectorq corresponding to the
↑-spin Fermi surface, will decrease with increasing temperature and they are presumably
responsible for the observed damping of spin waves at largeq in LaPb0.3MnO3 at 0.8Tc,
whereTc is the Curie temperature [21].
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Figure 2. The excitation energyE (in units of 2t) as a function ofn for S = 3
2 with various

values ofJ (in units of 2t).

Finally we point out that the proven region of ferromagnetic instability could certainly
be enlarged by use of improved variational wave-functions. Those used for the Hubbard
model [20, 22] could be adapted for this purpose.

3. Band narrowing in the paramagnetic state

In the classical treatment of the model defined by equation (1), two sites are considered
with one itinerant electron, and the limitJ/t →∞ is taken. The energy of the system is
±t cos(θ/2), whereθ is the angle between the classical vectors representing the two local
spins. In an exact quantum-mechanical calculation, Anderson and Hasegawa [9] and Kubo
and Ohata [17] classified the states of the two-site system with one electron according to
the total spinS0, which includes the electron spin as well as the two local spins. They
found energies±teff where

teff = t
(
S0+ 1

2

)/
(2S + 1) (16)

with S0 = 1
2,

3
2, . . . ,2S+ 1

2. Kubo and Ohata also considered an equivalent picture in which
the mobile carrier is a hole strongly coupled antiferromagnetically to local spinsS̃ = S+ 1

2,
so that the total spin on a site occupied by a hole isS as it should be. Thus in equation (16),
S is replaced bỹS and, to preserve the same energies±teff as in the electron picture, t
must be replaced byt (2S̃ + 1)/(2S̃).

To go beyond the two-site problem, Kubo and Ohata [17] introduced a virtual-crystal
approximation in which the effective hopping integralt eff is given by a weighted average of
equation (16) overS0. At high temperature, far above the Curie temperature, the weighting
factor is just the degeneracy 2S0+ 1, and one finds

t eff

t
= 2

3
+ 1

3(2S + 1)
. (17)
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As S → ∞, teff /t → 2/3, which is the classical result obtained by averaging cos(θ/2)
over the solid angle.

In the treatments discussed above, only one electron, or hole, is considered and the
band-narrowing factort eff /t is due entirely to strong coupling to the local spins. Band
narrowing due to correlation between electrons, as occurs in the Hubbard model, is not
included. This effect certainly occurs, since the limitJ/t →∞ excludes double occupation
of a site just like the limitU → ∞ in the Hubbard model. The aim of this section is
to include this effect, using a Green’s function equation-of-motion approach with Roth’s
decoupling approximation [23]. In the appendix, we show how this method, in its simplest
form, relates to equation (16) for the two-site one-electron problem. For the ferromagnetic
stability problem of section 2, it is equivalent to a variational treatment, considered by
Okabe [16], which is somewhat cruder than that used in section 2. In the paramagnetic
state at high temperature we find a stronger band-narrowing effect than that of equation (17)
and it depends onn, the number of itinerant electrons per atom.

The Roth scheme [23] for calculating quasiparticle bands in a correlated system is
to consider a retarded Green’s function matrixG, with elementsGpq(ω) = 〈〈Aq;A†q〉〉,
where the operatorsAp are a set of fermionic operators suitable for describing one-particle
excitations. A clever decoupling procedure for the equation of motion leads to the result

G(ω) = N(ωN − E)−1N (18)

where the energy and normalization matrices, E andN , are given by the thermal averages

Epq = 〈[[Ap,H ], A†q ]+〉 Npq = 〈[Ap,A†q ]+〉. (19)

The one-particle excitation energiesω are thus given by det(ωN − E) = 0. For the
Hubbard model, Roth [23] used two operators for a given wave-vectork leading to an
excitation spectrum consisting of two quasiparticle bands. Recent quantum Monte Carlo
calculations [24] yield spectra which are dominated by two peaks for eachk, thus defining
two quasiparticle bands. The Roth and Monte Carlo bands forU = 8|t | are generally in
remarkable agreement [25]. Forn = 0.75, wheren is the number of electrons per atom, the
two methods yield the same width of the narrowed lower band, but asn increases towards
1 the bands obtained by the Roth method narrow more rapidly than in the Monte Carlo
data. It should be mentioned that a different method of analysing Monte Carlo data leads to
more spectral structure than the simple two-peak form [26]. ForU →∞ the upper band is
removed to infinity and the lower band is obtained in the Roth scheme with a single Bloch
operator which ensures that no site is doubly occupied. We apply a similar procedure to
the model defined by equation (1) withJ → ∞; in this case the operator must not only
ensure that an electron does not hop onto a site which is already occupied, but that if it
hops onto an unoccupied site it does so with spin parallel to the local moment, forming a
state of total spinS + 1

2. The required operator for the↑-spin Green’s function is

Ak = N−1/2
∑
i

eik·RiAi (20)

with

Ai = (S + 1+ Szi )(1− ni↓)ci↑ + S−i (1− ni↑)ci↓ (21)

whereniσ = c†iσ ciσ . For the single operatorAk, the matricesE andN , given by equation
(19), are just numbers and the quasiparticle band is given by

ωk = Ek/Nk (22)
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with

Ek = 〈[[Ak, H ], A†k]+〉 Nk = 〈[Ak, A†k]+〉. (23)

Writing H = H0+H1, as in equation (1), we have

Ek = 〈[[Ak, H0], A†k]+〉 + 〈[[Ak, H1], A†k]+〉 = E0(k)+ E1(k). (24)

It is easily shown that [Ak, H1] = − 1
2JSAk, soE1 = − 1

2JSNk and

ωk = −1

2
JS + E0(k)/Nk. (25)

Clearly, from (23) and (20), Nk = 〈[Ai,A†i ]+〉, independently ofk, and

E0(k) = 〈[[Ai,H0], A†i ]+〉 +N−1
∑
〈i,j〉

eik·(Ri−Rj )〈[[Ai,H0], A†j ]+〉. (26)

Hence, from (25),

ωk = λεk + k − independent terms (27)

where the band-narrowing factorλ is given by

λ = P/Q (28)

with

P = −t−1〈[[Ai,H0], A†j ]+〉 (29)

Q = Nk = 〈[Ai,A†i ]+〉. (30)

Here i andj are nearest-neighbour sites.
After a lengthy but straightforward calculation we find

P = 〈(S + 1+ Szi )(S + 1+ Szj )[(1− ni↓)(1− nj↓)+ σ−i σ+j ]

+ S−i S+j [(1− ni↑)(1− nj↑)+ σ+i σ−j ]

+ (S + 1+ Szi )S+j [(1− ni↓)σ−j + (1− nj↑)σ−i ]

+ (S + 1+ Szj )S−i [(1− ni↑)σ+j + (1− nj↓)σ+i ]〉 (31)

and

Q = 〈(S + 1+ Szi )2(1− ni↓)+ (S + 1+ Szi )S−i σ+i
+ S+i (S + 1+ Szi )σ−i + (1− ni↑)(1− ni↓)S−i S+i + (1− ni↑)ni↓S+i S−i 〉.

(32)

In the appendix we show how the band-narrowing factorP/Q calculated here relates to that
of Kubo and Ohata (equation (16)), for the two-site one-electron case, and to a variational
result of Okabe [16] for the ferromagnetic case. Here we concentrate on the band narrowing
in the paramagnetic state. In this case it should be possible to write the thermal averages
of P andQ in a rotationally invariant form, independent of the choice of spin-quantization
axis. This may be achieved by symmetrizingP andQ under an interchange of↑ and↓
spins wherebySzi → −Szi , ni↑ → ni↓, S−i → S+i , σ

−
i → σ+i etc. ThusP andQ are each

written as the means of two expressions, before and after the interchange. We also invoke
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the symmetry ofP under interchange ofi and j . After some manipulation we find the
rotationally invariant forms

P = 1

2

〈
[(S + 1)2+ Si · Sj ]

[
2− ni − nj + 1

2
ninj + 2σi·σj

]〉
+ 1

2
(S + 1)〈(3− ni − nj )(Si + Sj ) · (σi+σj )〉

+ 〈(Sj · σj )Si · σi〉 − 〈(Sj · σi )(Si · σj )〉 (33)

and

Q = (2S + 1)

(
S + 1− 1

2
n

)
(34)

whereni = ni↑ + ni↓ and n = 〈ni〉. In evaluating the thermal average forQ we have
used the result〈Si · σi〉 = 1

2nS which is appropriate forJ → ∞, the case considered in
this section. We note that the normalization factorQ (=Nk) is independent of temperature
in the paramagnetic state. Clearly the band-narrowing factorP/Q depends on local and
itinerant-spin correlations in a much more subtle way than the classical〈cosθ/2〉 result.
To evaluateP more explicitly, we consider the high-temperature limit where there is no
correlation between neighbouring sites, so that the correlation functions can be factorized.
Then

P =
(
S + 1− 1

2
n

)2

+ 〈(Si · Sj )(σi · σj )〉 − 〈(Sj · σi )(Si · σj )〉 =
(
S + 1− 1

2
n

)2

(35)

since the last two terms cancel on expanding the scalar products and factorizing. Hence,
from (28), (34) and (35) the band-narrowing factor at high temperature is

λ = 1

2

(
1+ 1− n

2S + 1

)
. (36)

Comparing this with Kubo and Ohata’s factor, given by equation (17), we note a
stronger band-narrowing effect, particularly as the occupation of the band approaches one
electron/atom. In this limit,λ is independent ofS, and the same resultλ = 1

2 is obtained
for all n as S → ∞. Kubo and Ohata’s result is based on an average two-site problem,
whereas we consider a correlated electron propagating through the crystal.

4. Conclusion

Much recent work on the double-exchange model uses the approximation of classical local
spins, which ensures a stable ferromagnetic state. We have shown rigorously that for
quantum spinsS = 1

2, and band occupationn in the range 0.12 < n < 0.45, the state
of complete spin alignment is unstable against single-particle spin-flip excitation, even for
infinite Hund’s rule coupling.

The quasiparticle with reversed spin is a bound state of a majority-spin electron and a
magnon. For the manganite case ofS = 3/2, where the ferromagnetic state is stable in
our approximation, similar low-lying excitations are expected to play an important role as
the Curie temperature is approached, for example in the damping of spin waves and the
transport properties. We have also investigated band narrowing in the paramagnetic state,
particularly in the high-temperature limit. The band narrowing depends on occupation of the
band and on spinS. Our calculation, in which we consider a correlated electron propagating
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through the lattice, yields stronger band narrowing than that deduced from an averaged two-
site problem. When combined with strong electron–phonon coupling, this effect may be
important for understanding the insulating paramagnetic state of the manganites.
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Appendix

We first show how the method of section 3 relates to Anderson and Hasegawa’s [9] and Kubo
and Ohata’s [17] two-site result quoted as equation (16). In the standard Roth procedure
[23], the averages in the expressions forEk andNk (equation (23)) are independent thermal
averages. For the simple system of two sites with one electron, we can adopt an alternative
approach. Both expectation values can be calculated in an eigenstate of the system, classified
according to the total spinS0, and an averaging of the resulting band-narrowing factorteff /t ,
or λ in equation (28), can be carried out subsequently, following Kubo and Ohata. A state
of total spinS0 is produced by adding an↑-spin electron to an eigenstate|S0 − 1

2, S0 − 1
2〉

of the two-spin system with total spinS0− 1
2 andz-component of the spinS0− 1

2. Thus the
expectation valuesP andQ, given by equations (31) and (32), are evaluated in the state
|S0− 1

2, S0− 1
2〉, with no electron present. Hence

P = 〈(S + 1+ Szi )(S + 1+ Szj )+ S−i S+j 〉 (A1)

Q = 〈(S + 1+ Szi )2+ S−i S+i 〉. (A2)

Both are simply evaluated, using〈Szi 〉 = 1
2(S0 − 1

2) in the case ofQ, and one obtains
equation (16) forteff /t = λ = P/Q.

Finally we show how the Roth method of section 3 gives a result for the propagation of a
single↑-spin electron, with all local spins and other itinerant spins completely aligned down,
which is equivalent to a variational result of Okabe [16]. In this case, with〈Szi 〉 = −S,

P = 〈(1− ni↓)(1− nj↓)〉 (A3)

Q = 〈(1− ni↓)(1+ S−i S+i )〉 = (2S + 1)(1− n) (A4)

wheren is the number of↓-spin electrons per atom.P is readily evaluated in the Fermi
sea of non-interacting↓-spin electrons by transforming to Bloch operators. The final result
for the↑-spin band-narrowing factorλ = P/Q is

λ = 1

2S + 1

[
1− n− E2

g

(zt)2(1− n)
]

(A5)

where

Eg = N−1
∑
k

〈nk↓〉εk. (A6)

This agrees with the factor in Okabe’s [16] equation (5.2), apart from an obvious misprint.
Hence, for the case of a single spin flip, our Roth method is equivalent to a variational
ansatzwhich, although inferior to theansatzof section 2, gives reasonable results for the
correspondingU = ∞ Hubbard model. In fact, by puttingS = 0 in (A5) we have the
result of Shastryet al [27] for the Hubbard model.
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